

http://www.krict.re.kr | http://www.openmra.org

chemsafety@krict.re.kr

안내 사항

O 제품설계 단계에서 신속한 복합위해성 예측 및 위해성을 저감할 수 있는 전략적 의사결정을 통한 안전한 화학제품 설계(Safe-by-Deign, SbD)를 지원하기 위해 화학제품 구성물질 정보로 혼합물의 독성과 노출을 고려하여 복합 위해성을 예측할 수 있는 웹 기반 툴입니다.

O OpenMRA 결과 인용은 다음과 같이 출처를 명시하는 경우에만 허가됩니다.

Chemical Analysis Center, Korea Research Institute of Chemical Technology (2024). OpenMRA <u>https://www.openmra.org</u>

• 사용자의 요청은 프로세스에서 정보를 저장하는 사이트를 호스팅하는 서버에서 처리됩니다. 권한이 있는 직원만이 서버에 대한 액세스 권한을 가지며 권한이 없는 액세스로부터 서버를 보호하기 위한 보안 조치가 마련되어 있습니다. 한국화학연구원은 오류 추적 및 익명화된 통계(방문자 수, 회원가입 수, 회원가입자 소속기관 등)를 수집하기 위해서만 사용자 요청 정보를 사용하며 개별 결과 정보를 수집하거나 공개하지 않습니다. 사이트를 호스팅 하는 서버와의 통신은 사용자 데이터를 타사 서버로 전송하지 않습니다.

- 서명원 선임연구원
- 한국화학연구원 화학분석센터
- 문의 메일: chemsafety@krict.re.kr

O 매뉴얼 업데이트: 2024년 1월 4일

● 작성자: 이수진

O 문의

목차

<u>1. OpenMRA</u> 개요 ······1
<u>1.1. OpenMRA 주요 기능1</u>
<u>1.1.1. 혼합독성 예측모델2</u>
<u>1.1.2. 노출평가 ····································</u>
<u>1.1.3. 복합 위해도 예측모델3</u>
<u>1.2. 소프트웨어 목록4</u>
<u>1.3. 데이터베이스 (Database, DB) 목록 ······4</u>
<u>2. OpenMRA 사용 방법5</u>
<u>2.1. 메인화면 ·······5</u>
<u>2.2. 회원가입 ·······5</u>
<u>2.3. 로그인 ············6</u>
<u>3. [Stage 1] 혼합독성 예측모델8</u>
3.1. [1단계] 혼합물 제품 및 구성 화학물질 정보 입력9
<u>3.1.1. 위해성 평가 제품 등록9</u>
<u>3.1.2. 구성물질 정보 입력 ······11</u>
<u>3.2. [2단계] 예측모델 선택 ······16</u>
<u>3.3. [3단계] 예측결과 조회1</u>
<u>3.3.1. 출력정보 ····································</u>
<u>4. [Stage 2] 노출평가</u>
<u>4.1. 노출경로 및 노출량 정보 입력</u>
<u>5. [Stage 3] 복합 위해도 예측모델15</u>
<u>5.1. 복합 위해성 예측 모델 선택15</u>
<u>5.2. 독성참고치 및 예측무영향농도 입력16</u>
<u>5.2.1. 작업자/소비자 위해도 독성참고치(DNEL) 입력16</u>

<u>5.2.2. 환경 위해도 예측무영향농도(PNEC) 입력</u>
<u>5.3. 복합 위해도 예측 모델 선택</u>
<u>5.4. 복합 위해도 결과 조회16</u>
<u>5.4.1. 출력정보 ····································</u>
<u>5.4.2. 결과 리포트 출력</u>
<u>6.</u> 사사 ··································

1. OpenMRA 개요

화학제품 복합위해성 예측 플랫폼(Open Mixture Risk Assessment, OpenMRA) 은 화학제품 구성물질의 정보에 기반하여, 혼합물의 독성과 노출을 고려한 복합 위해성을 예측하는 웹 기반 툴입니다. 제품설계 단계에서 구성물질 정보에 기반 하여 신속하게 복합위해성을 예측하고, 혼합물의 구성성분 및 배합비 조절을 통 해 위해성 저감효과를 산정할 수 있는 전략적 의사결정을 지원합니다. OpenMRA 는 보다 안전한 화학제품 설계(Safe-by Design, SbD) 지원을 위해 화학안전 공 공기술 플랫폼 형태로 제공되고 있습니다.

1.1. OpenMRA 주요 기능

그림 1-1. OpenMRA 단계별 구성도

OpenMRA는 stage 1~3 과정을 통해 혼합물의 복합위해성을 예측합니다. (Stage 1) 제품(혼합물)의 독성을 예측하는 단계로, 사용자가 입력한 혼합물 정 보와 혼합독성(상가독성) 예측모델을 활용하여 입력한 혼합물의 혼합독성(상가독 성)을 예측하여 농도 및 독성영향(effect)에 대한 정보를 제공합니다.

(Stage 2) 제품(혼합물)의 노출평가를 수행하는 단계로, 인체(작업자, 소비자) 및 환경 노출평가 도출 시 활용할 수 있는 노출평가 툴에 대한 정보를 제공하며 해당 툴을 활용하여 노출량 정보를 입력할 수 있습니다.

(Stage 3) 제품(혼합물)의 복합 위해도 예측 기능을 제공합니다. 사용자가 입력 한 제품 구성성분에 대한 인체(작업자, 소비자) 및 환경 노출평가 값과 독성참고 치를 활용하여 복합 위해도를 예측할 수 있습니다.

그림 1-2. OpenMRA 시스템 구성도

OpenMRA는 예측모델로 6개의 혼합독성 예측모델, 인체(작업자, 소비자) 및 환 경 대상 4개의 노출평가모델, 2개의 복합위해도 산정 예측모델을 탑재하고 있으 며, 소프트웨어로는 Programming R, alvaDesc, Ketcher, Open Babel 및 VEGA QSAR를 포함하고 있고 데이터베이스로는 PubChem DB, KRICT MSDS DB 및 ECHA DB를 포함하고 있습니다.

1.1.1. 혼합독성 예측모델

OpenMRA에는 총 6종의 혼합독성 예측 모델이 탑재되어 있습니다. OpenMRA는 화학규제 하에 사용되는 전통적인 상가독성 예측 모델인 "농도상가 예측모델

(Concentration Addition (CA) model)"과 "반응상가 예측 모델(Independent Action (IA) model)"을 포함합니다. 또한, CA 및 IA 모델을 개선한 "일반화 농 도상가 예측 모델(Generalized Concentration Addition (GCA) model)", "QSAR 기반의 통합상가 예측 모델(Quantitative Structure-Activity Relationship based Two-Stage Prediction (QSAR-TSP) model)" 및 "딥러닝 기반 통합상가 예측 모델(Deep-based Two-Stage Prediction (Deep-TSP) model)"이 탑재되어 있습니다.

- CA 모델: 혼합물 내 독성작용이 유사한(similar mode of action) 구성물질들 의 농도를 상가하여 혼합독성을 예측하는데 활용되는 모델입니다. OpenMRA 에서 CA 모델은 화학제품 구성물질의 용량-반응곡선 정보 유무에 따라 2가 지 형태(Simple CA 및 CA)로 선택하여 혼합독성을 예측합니다.
 - Simple CA 예측: 구성물질의 반수영향농도(EC₅₀, half maximal effective concentration) 또는 반수치사농도(LC₅₀, half maximal lethal concentration) 값만 있는 경우, 구성물질의 EC₅₀ 도는 LC₅₀ 값을 이용하여 혼합물의 EC₅₀ 또는 LC₅₀ 값을 예측합니다.
 - CA 예측: 구성물질의 용량-반응곡선 정보가 존재하는 경우, 혼합물의 용량-반응곡선 전 범위를 예측합니다.
- IA 모델: 혼합물 내 독성작용이 유사하지 않은(dissimilar mode of action) 구성물질들의 반응(예. Effect(%))을 상가하여 혼합독성을 예측합니다.
- O GCA 모델: 구성물질의 독성효과를 고려하여 낮은 독성영향으로 기존 농도상 가 예측모델에 적용하지 못했던 화학물질들의 상가독성 예측이 가능하도록 개선하여 혼합독성을 예측합니다.
- QSAR-TSP 모델: 구성물질의 독성작용(Mode of Action, MoA)에 대한 정 보가 없는 경우, 화학구조에 따라 유사한 MoA 그룹으로 분류하고 각 유사한 MoA 그룹에 CA 모델을 적용하고, 다양한 MoA 그룹 간의 상가독성은 IA 모 델로 순차적으로 통합하여 계산합니다.
- O Deep-TSP 모델: 제품 구성물질의 분자구조 기반 특성과 독성기전에 중요한 인자인 단백질과의 상호작용 정보와 오토인코더를 활용하여 MoA를 예측합 니다. 예측된 MoA 정보를 기반으로, 유사한 MoA 그룹 간 CA 모델로 상가 독성을 예측하고, 나머지 그룹 간 IA 모델을 활용하여 최종 통합상가독성 예 측을 수행합니다. 독성기전을 고려할 수 있는 인자들과 중요 정보를 추출할 수 있는 딥러닝 기반 알고리즘인 오토인코더를 활용함으로써 MoA 예측의 정확도를 향상시켜 기존 QSAR-TSP의 한계를 개선하고 성능을 확장한 신 규 농도상가 예측모델입니다.

O 출처 및 참고문헌:

1.1.2. 노출평가

OpenMRA는 인체(작업자, 소비자) 및 환경 노출평가 도출을 위해 노출경로별 활 용 가능한 노출평가 예측모델 정보(웹 사이트 URL)를 제공합니다.

- O ECETOC TRA tool: 작업자, 소비자, 환경 등 다양한 수용체에 대한 화학물질
 의 위해성을 확인하기 위한 국외 노출평가 프로그램입니다.
 (접속정보: https://www.ecetoc.org).
- O Stoffenmanager: 중소규모 사업장에서 취급하는 화학물질의 건강 위해성을 확인하기 위한 국외 노출평가 프로그램입니다.
 (접속정보: https://stoffenmanager.com).
- O Advanced Reach Tool (ART): 작업 현장에서 취급하는 화학물질의 건강 위 해성을 확인하기 위한 국외 노출평가 프로그램입니다.
 (접속정보: https://www.advancedreachtool.com).
- K-CHESAR: 화평법에 따라 위해성 자료를 작성할 수 있도록 지원하는 국내 프로그램으로 작업자, 소비자, 환경 등 다양한 수용체에 대한 화학물질의 위 해성을 확인하기 위해 노출평가 기능 제공합니다 (접속정보: http://kchesar.kcma.or.kr).

1.1.3. 복합 위해도 예측모델

OpenMRA는 혼합물의 복합 위해도 산정에 활용 가능한 복합 위해도 예측모델을 제공합니다.

- O 상승작용을 고려한 복합위해도 예측: EU Biocidal Product Regulation (EU BPR) 기법 활용
- 상가작용을 고려한 복합위해도 예측: WHO/IPCS 기법 활용
- O 출처 및 참고문헌:
 - WHO/IPCS (World Health Organization/International Programme on Chemical Safety): Principles and Methods for the Risk Assessment of Chemicals in Food Environmental Health Criteria (2009)
 - ECHA (European Chemicals Agency). Guidance on the Biocidal Products Regulation Volume III human health, assessment and evaluation (Parts B+C) (2017a)
 - ECHA. Guidance on the BPR: Volume IV Environment, Assessment & Evaluation

(Parts B+C) (2017b)

 US EPA. Technical Support Document EPA's 2014 National Air Toxics Assessment (2018)

1.2. 소프트웨어 목록

- R(version 4.0.2): R(프로그래밍 언어)을 혼합독성 예측모델 알고리즘 구현 에 활용하였습니다.
- alvaDesc: 화학물질의 물리화학적 특성 및 분자구조적 특성 정보를 나타내는 분자표현자(molecular descriptor)를 계산하는 소프트웨어입니다. alvaDec 계 산은 QSAR-TSP 모델 구동 시 활용됩니다.
- O Open Babel: 화학물질 정보 파일을 다루거나 화학정보학 또는 분자모델링 계 산에 활용되는 소프트웨어입니다. 화학물질 분자구조를 에너지 기반으로 최적 화하는 과정에서 활용됩니다.
- Ketcher: 3D 분자구조를 그리기 위해 활용되는 소프트웨어입니다. 화학물질 의 분자구조를 사용자가 직접 그려서 입력하는 과정에 활용됩니다.
- VEGA QSAR: 데이터가 부족한 기존 및 신규 화학물질에 대한 구조 기반 물 리화학적특성 및 인체/환경 유해성 예측기능을 제공합니다.

1.3. 데이터베이스 (Database, DB) 목록

OpenMRA는한국화학연구원화학물질통합물질관리시스템(화통시스템,
http://krict-csm.krict.re.kr)의 MSDS(물질안전보건자료) DB와 연동되어 유해성
분류정보 및 규제정보(GHS, Globally Harmonized System)가 제공되며, 미국
NIH의 PubChem DB와 연동되어 예측계산에 필요한 분자구조, CAS 번호 및 일
부 물성 정보(분자량, <u>https://pubchem.ncbi.nlm.nih.gov/</u>)를 활용할 수 있습니다.
또한 데이터가 부족한 화학물질에 대해 추가 및 보완할 수 있도록 ECHA DB
(<u>https://echa.europa.eu/)</u> 연동을 통한 인체/환경 유해성 데이터 수집 기능을 활
용할 수 있습니다.

OpenMRA

- 2. OpenMRA 사용 방법
 - 2.1. 메인화면

그림 2-1. OpenMRA 메인화면

OpenMRA 홈페이지에 접속하면, 위와 같은 메인화면을 확인할 수 있습니다. 메 인화면 상단의 항목들을 통해 OpenMRA와 관련한 정보를 확인할 수 있습니다.

- ① Home: 해당 메뉴를 선택하면 메인화면으로 돌아갈 수 있습니다.
- ② OpenMRA: OpenMRA의 주요기능, 핵심가치, 전략적 활용 방안 등의 상세 정 보를 제공합니다.
- ③ Developer: 개발자 관련 센터인 화학분석센터 홈페이지로 이동합니다.
- ④ Download: 영문 및 한글로 된 OpenMRA의 리플릿과 매뉴얼을 다운로드할 수 있습니다.
- ⑤ KRICT: 한국화학연구원 홈페이지로 이동합니다.

2.2. 회원가입

OpenMRA 홈페이지로 접속 후 메인화면의 가운데 "Start now"를 클릭하면, 아래 와 같은 로그인 화면을 확인할 수 있습니다.

그림 2-2. OpenMRA 회원가입 화면

- 회원가입: 처음 접속하는 사용자는 회원가입을 위해 "회원가입" 버튼을 클릭합 니다.
- ② 회원가입 내용 작성: 회원가입에 필요한 이메일, 이름, 비밀번호, 소속 등 관 련 정보를 입력합니다.
- ③ 이메일 인증하기: 개인 이메일 인증을 통해 회원가입을 완료합니다.
- 2.3. 로그인

1990 Ja	로그인
	계정에 로그인 하세요. E-mail
1 pril	온 이메일
A Anton	Password
-Name -	5 비밀번호
(All and a second s	✔ 로그인 상태 유지
	로그인 2
	회원가입 아이디 찾기 비밀번호 찾기

그림 2-3. OpenMRA 로그인 화면

- ① 로그인: 이메일과 비밀번호를 입력한 후 "로그인" 버튼을 눌러줍니다.
- ② 아이디/비밀번호 찾기
 - 아이디를 잊으신 경우, 아래의 "Find ID(아이디 찾기)" 버튼을 눌러 이름, 소속을 입력하여 아이디를 찾을 수 있습니다.
 - 이 비밀번호를 잊으신 경우, 아래의 "Find Password(비밀번호 찾기)" 버튼을 눌러 이름, 소속, 이메일을 입력하여 등록하신 이메일로 새로운 비밀번호를 받을 수 있습니다.

3. [Stage 1] 혼합독성 예측모델

그림 3-1. Stage 1 선택 화면

회원가입 및 로그인 후, Stage 선택화면이 출력됩니다(그림 3-1). 혼합물 위해 성 평가를 위해서는 Stage 1을 선택하여 위해성평가 제품 등록 화면으로 이동해 야 합니다(그림3-2).

3.1. 혼합물 제품 및 구성 화학물질 정보 입력

3.1.1. 위해성 평가 제품 등록

									~ ~ ~							naiseilea de
나의 제품	STAGE 1															
신규 제품 생성	U		Step1 ose the model		St	o ep2 format) p4 result		
Test	정보 입력															
	目 위히	배성 평가 제품 등록														
	* 혼합 * 생민	i물명 Test	t.													
	and all c	2]														
	구성물질	실정보는 내보내기를 통해 PC에	저장이 가능합니다.													7
	6															
매뉴얼 다운로드	と、地名															
	0															
이 지자 이야기	9															
PC에 저장 🗾	1	Fenuron	101-42-8	Q	() 입력	1	×	9	1	2	1	PubChem	KRICT (MSDS)	ECHA	SaferChemDX	
PC에 저장 🚺	1	Fenuron	101-42-8	Q Q	입력 비입력	× ×	X	X	N N	X	8	PubChem PubChem	KRICT (MSDS)	ECHA ECHA	SaferChemDX SaferChemDX	
PC에 저장 🔹 🚺 서버에 저장 🔹 🚺 대품 삭제	1 2 3	Fenuron Chlorbromuron Monuron	101-42-8 13360-45-7 150-68-5	Q Q Q	[] 입력 [] 입력 [] 입력	N N N	N N N	SS	N N	N N N	N N N	PubChem PubChem PubChem	KRICT (MSDS) KRICT (MSDS) KRICT (MSDS)	ECHA ECHA ECHA	SaferChemDX SaferChemDX SaferChemDX	
PC에 저장 🔹 🚺 서버에 저장 💼 제품 삭제	1 2 3 4	Fenuron Chlorbromuron Monuron Chlorotoluron	101-42-8 13360-45-7 150-68-5 15545-48-9	Q Q Q	[입력 [입력 [입력 [입력	 S S S 	N N N	 	X X X	 K K K 		PubChem PubChem PubChem PubChem	KRICT (MSDS) KRICT (MSDS) KRICT (MSDS) KRICT (MSDS)	ECHA ECHA ECHA ECHA	SaferChemDX SaferChemDX SaferChemDX SaferChemDX	
PC에 저장 🔹 🖬 서버에 저장 🔹 🖬 제품 삭제 🔹 적용 정보을 적업 검색해보세요.	1 2 3 4 5	Fenuron Chlorbromuron Monuron Chlorotaluron Monolinuron	101-42-8 13360-45-7 150-68-5 15545-48-9 1746-81-2	Q Q Q Q		<u>S</u> <u>S</u> <u>S</u> <u>S</u>	X X X	(3)(4)(5)(5)(6)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)<l< td=""><td>X X X X</td><td>X X X</td><td>K K K</td><td>PubChem PubChem PubChem PubChem PubChem</td><td>KRICT (MSDS) KRICT (MSDS) KRICT (MSDS) KRICT (MSDS) KRICT (MSDS)</td><td>ECHA ECHA ECHA ECHA ECHA</td><td>SaferChemDX SaferChemDX SaferChemDX SaferChemDX SaferChemDX</td><td></td></l<>	X X X X	X X X	K K K	PubChem PubChem PubChem PubChem PubChem	KRICT (MSDS) KRICT (MSDS) KRICT (MSDS) KRICT (MSDS) KRICT (MSDS)	ECHA ECHA ECHA ECHA ECHA	SaferChemDX SaferChemDX SaferChemDX SaferChemDX SaferChemDX	
PC에 저장 대 서너에 저장 대 생활집 정보 검색 발굴집 정보 검색 발굴집 정보 검색	1 2 3 4 5	Fenuron Chlorbromuron Monuron Chlorotoluron Monolinuron	101-42-8 13360-45-7 150-68-5 15545-48-9 1746-81-2	Q Q Q Q	입력 입력 입력 입력 입력 입력 입력	<u>S</u> <u>S</u> <u>S</u> <u>S</u>	K K K K		 A A A A 	K K K	K K K K	PubChem PubChem PubChem PubChem	KRICT (MSDS) KRICT (MSDS) KRICT (MSDS) KRICT (MSDS) KRICT (MSDS)	ECHA ECHA ECHA ECHA ECHA	SaferChemDX SaferChemDX SaferChemDX SaferChemDX SaferChemDX	
PC에 저장 [1] 서버에 저장 [2] 제품 삭제 학물질 정보 검색 '당질 정보류 직접 리박해보세요. NGC) 한반물질정보스(14)	1 2 3 4 5	Fenuron Chlorbramuran Monuran Chloratoluran Monolinuran	101-42-8 13360-45-7 150-68-5 15545-48-9 1746-81-2	Q Q Q Q	입력 1	K K K K K		 S S S S 	 S S S 	K K K K	 S S S 	PubChem PubChem PubChem PubChem PubChem	KRICT (MSDS) KRICT (MSDS) KRICT (MSDS) KRICT (MSDS) KRICT (MSDS)	ECHA ECHA ECHA ECHA ECHA	SaferChemDX SaferChemDX SaferChemDX SaferChemDX SaferChemDX	

그림 3-2. [Stage 1] 위해성 평가 제품 등록 화면(1)

위 그림 3-2의 좌측 화면은 위해성평가 제품 등록을 위한 '신규 제품 생성' 버 튼, OpenMRA 구동에 도움을 줄 수 있는 '매뉴얼 다운로드' 기능, '등록한 제품 정보 저장'을 위한 버튼, 제품 등록을 위한 '화학물질 정보 검색' 기능 및 'OpenMRA 관련 문의 메일'이 안내되어 있습니다.

- 신규 제품 생성: "신규 제품 생성" 버튼을 클릭하여 새로운 위해성 평가 제품 을 등록할 수 있습니다.
- ② 매뉴얼 다운로드: OpenMRA 구동 과정에 대한 전반적인 설명이 포함된 국문 또는 영문 매뉴얼을 확인할 수 있습니다.
- ③ 제품 정보 저장: 사용자가 작성한 제품 정보는 서버에 저장할 수 있으며, 필요 시에 작성한 제품을 목록에서 삭제할 수 있습니다.
 - 서버에 저장: "서버에 저장" 버튼을 클릭하면, 입력한 정보가 OpenMRA 내 부 서버에 저장됩니다. 다시 로그인할 경우, 입력한 해당 혼합물 및 구성물 질 정보가 조회됩니다. 서버에 저장하면 혼합물명 앞의 아이콘이 ♪ 에서
 ♀ 로 변경되는 것을 확인할 수 있습니다.

④ 문의 메일(Contact): OpenMRA와 관련하여 문의 가능한 메일 주소입니다.

OpenMRA	OpenMRA :	3								A	Myungwon Seo 🗸	Language ~] <mark>KRİC</mark> T≌	국화학연구원
🗁 나의 제품				>			STAC	5E 2			> 9	S	TAGE 3	
한 신규 제품 생성		c	Step1 hoose the model	St Input in	o ep2 formati	on		C	S hoose t	Step3	nation	Step4 Check the resul		
[5] Test	정보 입력	0												
	目 위히	i성 평가 제품 등록							_					
	• 혼호	남물명 T	est											
	• 설명	T T	est											
	구성물질	! 정보는 내보내기를 통해 PC	메 저장이 가능합니다.									8		
							이터 입력 노출	시나리오						
	번호	화학물질명	CAS number	유해성정보		인제			환경		•	DB 검색	V	🜌 선택
④ PC에 저장		2	U	4	경구	경피	홂입	수생태	토양	퇴적물	6			
주 서비에 저장	1	Fenuron	101-42-8 Q	(이 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의		~	×	~	~	~	PubChem KRIC	T (MSDS) ECH	A SaferChemDX	
	2	Monuron	150-68-5 Q	<u> [] 입력</u> (급 인령)	2 2	×	~	~	~	~			A SaferChemDX	
	4	Chlorotoluron	15545-48-9 Q	(1) 11 11 11 11 11 11 11 11 11 11 11 11 1		~	~	~	~	~	PubChem KRIC	T (MSDS) ECH	A SaferChemDX	
5) 화학물질 정보 검색 또 회학물질 정보를 직접 검색해보세요.	5	Monolinuron	1746-81-2 Q	[[:::::::::::::::::::::::::::::::::::	~		~		~		PubChem KRIC	T (MSDS) ECH	A SaferChemDX	
ПСІ) 파라물질정보시스템					0						**			
														서상 >
.Contact chemsefety@krist.re.kr														

그림 3-3. [Stage 1] 위해성 평가 제품 등록 화면(2)

위 그림 3-3의 우측 화면은 위해성 평가 제품 등록에 필요한 정보를 입력할 수 있는 화면입니다. 사용자는 제품 구성물질 정보를 기능에 따라 수동 및 자동으로 입력할 수 있습니다.

- 위해성 평가 제품 등록: 혼합독성 예측 대상 혼합물 또는 제품 등록을 위해 '혼합물명'을 입력하고, 필요에 따라 제품의 '설명'을 작성할 수 있습니다.
- ② 화학물질명 입력: 혼합물의 구성성분의 화학물질명을 입력합니다.
- ③ CAS 번호 입력: 성분의 CAS 번호를 입력합니다.
- ④ 유해성 정보 입력: '입력' 버튼을 클릭할 경우, 각 구성물질의 유해성 정보 입 력을 위한 새로운 팝업창이 생성됩니다.
- ⑤ 노출시나리오 입력: 위해성 평가를 위한 인체 및 환경 노출시나리오를 선택합니다.
- ⑥ DB 검색: PubChem, KRICT (MSDS), ECHA의 DB를 통해 선택한 구성물질의 MSDS 정보(위험도 분류 및 위험관리 조치 등)를 조회할 수 있습니다. 제 조사별로 MSDS가 일부 다를 수 있으므로, OpenMRA를 통해 시약명 및 제조

사를 확인하여 물질명을 입력하고 MSDS 내 유해성 정보를 확인할 수 있습니 다.

- ⑦ 성분 선택: 필요에 따라 혼합독성 예측을 위한 구성물질을 선택하여 구동할 수 있습니다.
- ⑧ 성분 선택 및 제품 양식 다운로드 기능: 2 클릭할 경우 사용자가 OpenMRA 양식에 맞추어 작성한 구성물질 정보가 담긴 파일을 불러올 수 있으며, 3 클 릭할 경우 구성물질 정보 입력 엑셀양식 파일을 다운로드 받을 수 있습니다. 또한 ⑦에서 화학물질을 선택하고 3 클릭하여 사용자가 삭제하고자 하는 성 분을 삭제할 수 있습니다. 1 클릭할 경우 구성물질을 추가할 수 있습니다.
- ⑨ 언어 선택: 사용자의 필요에 따라 한글 및 영어로 언어를 선택할 수 있습니다.

3.1.2. 구성물질 정보 입력

혼합물 구성물질 등록: 그림 3-4 화면과 같이 혼합물의 구성물질 등록을 위해 ①화학물질명, ②CAS number, ③유해성정보 항목을 필수로 입력해야 합니다. 혼합독성 예측모델 구동 시 인체/환경 유해성에 대한 용량-반응곡선 입력 정보에 따라 활용 가능한 혼합독성 예측모델이 달라질 수 있습니다.

1성물	는 내보내기를 통해 PC에	저 2 능합니다.		0						0				
		3	0	4	데이	이터입력	1	_						
	#14152 21/14					노충	시나리오					199		
2.2	외역돌일영	CAShumber	유해성정보		인체			환경			DB B	194		신덕
		1	1	경구	경피	흡입	수생태	토양	퇴적물					
1	Fenuron	101-42-8 Q	(1) 입력	Y		~	v			PubChem	KRICT (MSDS)	ECHA	SaferChemDX	
2	Chlorbromuron	13360-45-7 Q	<u></u> 입력	1	~	~	~	~	~	PubChem	KRICT (MSDS)	ECHA	SaferChemDX	
3	Monuron	150-68-5 Q	<u></u> [] 입력	1	~	~	~	~		PubChem	KRICT (MSDS)	ECHA	SaferChemDX	
4	Chlorotoluron	15545-48-9 Q	(입력	~	>		~	~	~	PubChem	KRICT (MSDS)	ECHA	SaferChemDX	
5	Monolinuron	1746-81-2 Q	ि धब	1	~	~	~	~	~	PubChem	KRICT (MSDS)	ECHA	SaferChemDX	

그림 3-4. 혼합물 구성물질 등록

- 필수 입력값: 전체 화면에서 화학물질명, CAS 번호, 유해성정보의 물성 탭의 성분 구분, 물성, 함량(%), 분자량 및 인체/환경 유해성 탭의 실험 종, 공통 독성종말점 (EC₅₀ 또는 LC₅₀), 독성값, 독성값의 단위
 - · 공통 독성종말점 (EC₅₀ 또는 LC₅₀)과 농도 단위 정보는 기본 모델 인 Simple CA를 구동하기 위해서는 필수적으로 입력되어야 합니다.
- O 선택 입력값: 전체 화면에서 ③유해성정보에 물성 탭의 녹는점/어는점, 끓는점, 밀도, 증기압, 분배계수 등 및 인체/환경 유해성 탭의 매체구분

(구분), 시험기간, 독성영향, 용량-반응곡선 정보, ④노출시나리오

- 독성정보는 용량-반응곡선 정보가 있는 경우 CA, IA, GCA, QSAR -TSP, Deep-TSP 모델 사용 시 입력해야 합니다. 없는 경우 SCA 예측모델 사용만 가능합니다.
- 2) 화학물질명 입력: 그림 3-4의 ①번 화학물질명 입력 시, 자동완성 기능을 통해 입력 문자가 포함된 화학물질 목록(PubChem 연동)이 그림 3-5와 같이 표시됩니다.

성물길	될 정보는 내보내기를 통해 PC에 저	장이 가능합니다.									
					데이	비터 입력					
eu 🕁		CAC average				노출	시나리오			20.344	
민모	외역물일영	CAS number	유해성정보		인체			환경		UB 접역	신역
				경구	경피	흡입	수생태	토양	퇴적물		
1	Fenuron	Q	前 입력							PubChem KRICT (MSDS) ECHA SaferChemDX	
	FENURON Fenurone FENURON TCA Fenuron-TCA										
	Fenuron trichloroacetate Fenuron-d5										
	Lufenuron Defenuron										
	Lufenuron, (+)-										

그림 3-5. 혼합물 구성물질명 입력

3) CAS 번호 입력: "화학물질명" 조회 시, 그림 3-6와 같이 CAS 번호도 자동으 로 연동되어 선택 후 입력할 수 있습니다.

구성물결	될 정보는 내보내기를 통해 PC에 저?	장이 가능합니다.									1 🗐
					데이	이터 입릭 노출	역 시나리오				
번호	회학물질명	CAS number	유해성정보	경구	인체 경피	흡입	수생태	환경 토양	퇴적물	DB 검색	☑ 선택
1	FENURON	FENURON Q 101-42-8	입력							PubChem KRICT (MSDS) ECHA SaferChemDX	

그림 3-6. CAS 자동 연동 화면

 ○ 자동 조회가 되지 않을 경우, "CAS number" 칸을 클릭하여 나타나는 팝업 창에서 수동 입력하여 CAS 번호와 관련된 제품명, 제조사, 유해등급 정보를 조회할 수 있습니다(그림3-7).

설명	Test						
			CAS 번호 조로	کا		\times	
물질 정.	CAS	NO ~			Q Search		
	CAS NO	제품명		제조사	유해등급		
			Please Input Searc	nText.		- 1	
Ż.			Please Input Searc	nText.			

그림 3-7. CAS 수동 입력 팝업 화면

- 연동 또는 입력된 CAS 번호를 조회할 경우, CAS 번호와 관련된 제품명, 제 조사, 유해등급 정보를 세부 팝업창에서 조회할 수 있습니다.
- 신규 물질(CAS 번호 정보가 없는 물질)의 경우 "CAS number" 칸에 임의의 숫자를 입력할 수 있습니다(임의로 CAS 번호를 입력하는 경우 CAS 번호와 연관된 정보 조회 불가능).
- 4) 유해성 정보 입력: 그림 3-4의 ③번 유해성 정보 한물 구성물질에 대한 물성, 인체 유해성, 환경유해성, GHS 정보를 입력할 수 있습니다.

					Fenuror	n - 유해성정보팝'	XII				
圭 물성	ţ		圭 인체 유해성			圭 환경 :	구해성		≣ GHS		
									(D) E	CHA 데이터 DB연동	UEGA QSAR
번호	구분	함량(%)	분자량	분	자구조	물질상태	녹는점/어는점	끓는점 (°C)	밀도	증기압
1	하위혼합물질 ~	6.102601507	164.21	Loaded	Draw File Upload	고체 ~					
											저장 >

그림 3-8. 유해성 정보(물성) 입력

 ○ 물성 입력: 그림 3-8과 같이 구성물질의 구분, 함량, 분자량, 분자구조, 물 질상태, 녹는점/어는점, 끓는점, 밀도, 증기압, 분배계수(logpow), 수용해도, 가수분해평형상수, 핸리상수(H), 분배계수(logKoa)를 입력합니다. 상단의 'ECHA 데이터 DB연동' 버튼을 클릭하면 해당 화학물질에 대한 물성 정보를 ECHA DB로부터 수집하여 화면에 입력합니다. ECHA DB에 입력된 화학물 질의 정보가 없는 경우 데이터가 입력되지 않습니다. 'VEGA QSAR'는 현재 서비스 준비 중으로 비활성화 되어 있습니다.

물성				圭 인체 유해성			重 환경 유해성			≣ GHS		
											ⓒ ECHA 데이터 DB연동	UEGA QSAR
번호	구분	말 만(%)	분자량	#자구조	불질상태	녹는점/어는점	월는정 (°C)	일도	중기압	분배계수 (logpow)	수용해도	가수분해평렬성
1 0)9(5	혼합물질 ~	6.102601507	164.21	Loaded File Upload	고제 ~							

그림 3-9. 분자구조 입력 화면

- 화학물질 구조 입력: 입력된 화학물질명 또는 CAS 번호에 해당하는 화학물 질 구조가 PubChem 내에 있는 경우, OpenMRA 내부로 분자구조 정보를 연 동합니다(그림 3-9).
- PubChem에 분자구조가 검색되지 않거나 신규 화학물질의 경우, 그림3-9와 같이 ①"Draw" 버튼을 선택하여 Molecular Structure Tool을 활용하여 직접 분자구조를 그린 후, MDL Molfile 구조로 저장할 수 있습니다(그림 3-10). 파일명은 "Filename.mol"로 저장됩니다. 저장된 파일을 웹에 ②"File Upload" 버튼을 선택하여 다시 업로드하여 예측모델 계산에 활용할 수 있습 니다.

그림 3-10. Molecular Structure Tool 화면

 \times

Fenuron - 유해성정보팝업

	[① ECHA 데이터 DB연동 🔲 VEGA QSAR 🕀
시험기간 독성영	향 독성종말점 (End point) 독·	성값 입력단위 용량반응곡선 🗆 선택
✓ 급성 ✓ 급성 독성	~ LC50 ~ 251.0	mg/kg ~
	시험기간 독성영 ~ 급성 ~	시험기간 독성영향 독성중말점 (End point) 독 급성 급성 독성 [LC50 ~] 251.0

그림 3-11. 유해성 정보(인체 유해성) 입력

이 인체 유해성: 그림 3-11과 같이 구분(노출경로), 생물종, 시험기간, 독성영 향, 독성종말점(Endpoint), 독성값, 입력단위, 용량반응곡선을 입력합니다. 인체유해성 정보는 사용자의 필요에 따라 🗐을 클릭하여 침력된 하목을 삭제할 수 있습니다. 또한 사용자가 직접 입 력할 수 있는 정보가 없는 경우, 'ECHA 데이터 DB 연동'을 선택하면 ECHA DB로부터 해당 구성물질의 인체 유해성 정보를 자동으로 연동하여 화면에 입력됩니다.

				Fenuro	on - 유혀	해성정보팝업)
玉 물성	ġ		圭 인체 유하	성		圭 환경유	해성			≡c	iHS			
									E E	CHA 데이	터 DB연동	VE	GA QSAR	Ŧ
번호	매체구분	생물종		생물종	X	시 험기 간	독성종말점	(End point)	독성값		독성값 입	리력단위	용량반응곡선	□선택
1	수생태 ~	Fish (Fresh Water)	~	Scenedesmus vacuolatus 🗸	급성	~	EC50	~	130.0		mg/L	~		
														저장 >

그림 3-12. 유해성 정보(환경 유해성) 입력

- 환경 유해성: 그림 3-12와 같이 매체구분, 생물종, 시험기간, 독성종말점 (Endpoint), 독성값, 독성값 입력단위, 용량반응곡선을 입력합니다. 인체 유 해성과 동일하게 사용자의 필요에 따라 유해성 정보를 추가 또는 삭제할 수 있으며, 'ECHA 데이터 DB 연동'을 선택하면 ECHA DB로부터 해당 구성물 질의 환경 유해성 정보를 자동 연동하여 화면에 입력됩니다.
- 동일한 독성 종말점(Endpoint)에 대한 개별 구성물질의 용량-반응곡선 정 보를 입력하면 예측모델을 통해 혼합물의 용량-반응곡선을 예측할 수 있습 니다.
- O 구성물질들에 대해 동일 생물종에 대한 동일한 독성정보(독성종말점, 독성 값, 독성값 입력단위 등)을 입력해야 정확한 혼합독성 예측을 수행할 수 있 습니다.

- Ο 실험대상 정보[분류군, 생물종], 용량-반응곡선 정보[회귀모형, 모형 농도 단위, 회귀모형 파라미터(α, β, γ), 예측 농도 단위]를 입력함으로써, 다양한 혼합독성 예측모델(SCA, CA, IA, GCA, QSAR-TSP, Deep-TSP)을 사용 할 수 있습니다.
- 용량-반응곡선 정보 입력은 선택사항이며, 미입력 시 혼합독성 예측모델 중 Simple CA 모델만 구동할 수 있습니다.

를 물성	圭 인체 유해성	圭 환경 유해성	± GHS
			DB연동 🗐 💼
번호	구분	GHS	□선택
1	SELECT 🗸		
2	인체위험성 ~	H319	
3	인체위험성 🗸	H335	
4	인체위험성 🗸	H361	
5	환경위험성 🗸	H400	
6	환경위험성 🗸	H410	
7	환경위험성 🗸	H411	

그림 3-13. 유해성 정보(GHS) 입력

○ GHS 입력: 그림 3-13과 같이 구성물질의 GHS (Globally Harmonized System of Classification and Labelling of Chemicals) 입력을 위해 구분 (인체/환경/물리 위험성), GHS 등급을 입력합니다. 사용자의 필요에 따라 정보를 추가(━) 또는 삭제(━)할 수 있으며, 'ECHA 데이터 DB 연동'을 통해 해당 구성물질의 GHS 정보를 자동 연동하여 사용할 수 있습니다.

3.2. 예측모델 선택

Stage 1의 Step 3에서는 사용자가 입력한 데이터 수준에 따라 이용할 수 있는 혼합독성 모델들을 선택할 수 있습니다.

Step1 Choose the model			Step2	ion	Step3 Choose the information	Step4 Check the result	
선택							
인체 유해성	Ŧ	환경 유히	배성				
용량반응곡선(DRC) 정보 유무	구분	생물종	시험기간	독성영향	독성종말점 (End point)	공통 독성종말점을 가지는 물질의 수	선택
DRC - Y	경피	Rat	급성	급성 독성	LC50	12	
1택 인체 유해성	2	환경 유히	배성				
[택 인체 유해성 용량반응곡선(DRC) 정보 유무	2 ™Mi	환경 유히 만분 - 신	배성 생물종 시	혐기간	독성종말점 (End point)	공통 독성종말점을 가지는 물질의 수	선택

그림 3-14. 혼합독성 예측 모델 선택 전 데이터 선택 화면(예시)

- 그림 3-14는 사용자가 입력한 혼합물의 인체/환경 유해성 정보 중 혼합독
 성 예측에 사용할 수 있는 데이터를 선택하는 화면입니다.
- 해당 단계에서는 입력된 데이터 중 DRC(용량 반응 곡선) 정보의 유무, 생 물종, 시험기간, 독성종말점(Endpoint) 등 입력된 데이터 중 통일성을 가지 는 데이터끼리 선택할 수 있으며, 인체 유해성과 환경 유해성의 각 탭 별로 하나의 데이터만 선택할 수 있습니다.

그림 3-15. 혼합독성 예측 모델 선택 화면

 ○ 그림 3-15는 혼합독성 예측모델 선택 화면으로, 입력된 데이터 수준에 따 라 이용할 수 있는 혼합독성 모델들을 선택할 수 있습니다. 하나의 모델만 선택하여 구동할 수 있으며 여러 개의 모델을 선택하여 한번에 구동 가능합 니다.

3.3. 예측결과 조회

3.3.1. 출력정보

	Step1 Choose the model		Step2	n	Choose	Step3 heinformation	Step4 Check the result			Step1 Choose the mode	1	Step2	n	SI Choose th	einformation	Ste Check th	2 2p4 he result	
1체 유해성		환경 유해성					Relo	ad DOCX Download	重 인체 유해성		王 환경 유해성						Reload	DOCX Dow
) 혼합물 함령	l -		은 가장보수적	으로예측된	특성값	0 k 8	당반응곡선예측결과		(5) 혼합물 항량			@ 가장보수적	으로 예측된 독	성값	II 10 89	반응곡선예	측결과	
- den	2 24/07 10/07 2000		반수영향동도(ECS 단위(Unit) 예측모형(Model)	50)		342.657	Mixture dose-res	ponse curve				반수영향동도(ECI 단위(Unit) 여측모양(Model)	0)		0.872 mg/L 80 **	Mixture • ca	e dose-respor	nse curve
						CA 99 **-	Leg10 cercente	ose ation (rM)						1	Simple CA	18 Lo	ug10 concentration	i (nM)
모델 결과 요	भ्रम					CA and an and a set of the set of	Leg10 concent	units (M)	憲 모델 결과 요약	±				3	Simple CA	100 LO	ng 10 concentration	000 (07M)
모델 결과 요	শ্যেদ্র হাণ্ডপ্রন্থি	CAS number	구분	물질상대	함영 문자	CA Base	e ne Legt0 concent 특성값 예측 농도 단		(함) 모델 철과 요약	E Accessor	CASnumber	구분	#2044	100	Section Sectio	10 Lo	ng 10 concentration	(M)
모델결과요 오 1	ম্পৃত্র ন্যান্দ্রভাগ্য Metouron	CA5 number 19937-59-8	구분 ·하위혼합용질	<u>동</u> 글상태 고제	<u>임명</u> 분지 4.303 228.6	CA 8 4-35375 (Endpoint 80 LC50	· ···· Lag10 ccrown	ne (b) Ren (b) R (19년주의/분정 전세 SaferChemDX)	(1) 모델 결과 요약 방호 1	E. Attesting Metobromuron	C45 number 3060-89-7	구분 하위오합물질	<u>중장상대</u> 고치 1	999 gave 6.442 259.10	Simple CA Image: state s	100 Lo	ng 10 concentration	(nM)
모델 결과요 호 1	स्ट्रम सम्प्रकृतन Metouron Fenuron	CAS number 19937-59-6 101-42-8	구분 하위온합물질 하위온합물질	জন্মকার্ম ক্রমা ক্রমা	833 843 4.303 228.6 6.103 164.1	CA 単	· ···································	magen (146) 전 (18년주의분왕 관역 SaferChemDX) SaferChemDX	1 2	E Defigi Striff Metobramuran Buturan	CAS number 3060-89-7 3766-60-7	구분 하위오합물질 하위요합물질	<u>중당상대</u> 고자 1 고자 1	2091 2745 4.442 259.10 5.144 236.71	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	190 Ko	g10 concentration 에찍 등도 단위 nM nM	Control Control SaferChemi SaferChemi
모델 결과 요 호 1 2 3 3-(4-to:	মইয়ে মইয়েই উঠি Metawaron Feruron gerupyblemyUr1,1-dimethyluraa	CAS number 19937-59-8 101-42-8 34123-59-6	구분 아위온합용실 아위온합용실 아위온합용실	<u>동등</u> 상대 고제 고제 고제	552 g23 4.303 228.6 6.103 164.2 0.559 206.2	KA #	· ···································	R OVENESS MM SaferOnmDX SaferOnemDX SaferOnemDX SaferOnemDX	自 모델 경과 요약 변호 1 2 3	E Attacksonuron Buturon Metouron	CAS number 3060-99-7 3766-60-7 19937-59-8	구분 하위온함물질 하위온함물질 하위온함물질	<u>83364</u> 1 고서 1 고서 1	1 10 10 10 10 10 10 10 10 10 10 10 10 10	Alternative Alternati	100 Loo 594 664 1777	ng10 concentration optio concentration mM mM	(M) CPIO 2823 SaferChemi SaferChemi SaferChemi
모델 결과 요 호 1 2 3 3-(4-to: 4	New State Metauron Feruan Peruan Puoreturon	CAS number 19937-59-8 101-42-8 34123-59-6 2164-17-2	구분 하위문합물질 하위문합물질 하위문합물질 하위문합물질	#3264 고제 고제 고제 고제	함왕 분석 4.303 228.8 6.103 164.1 0.559 206.2	CA #	····· Legiti concerni 목성값 이목 높도 같 177 nM 251 nM 23 nM 769 nM	R OP(PAHDS 04) SaferChamDX SaferChamDX SaferChamDX SaferChamDX	唐 오열 정과 유약 번호	E Attasts Metobromuron Buturon Metouron Linuron	CAS number 3060-89-7 3766-60-7 19937-59-8 330-55-2	구분 아이온잡물질 아이온잡물질 아이온합물질 아이온합물질	<u>동당상대</u> 1 고서 1 고서 1 고서 3	199 2516 4.442 259.10 5.144 236.71 303 228.66 2966 249.10	A - Jargenia A - Jar	190 Lo 1932 4 594 664 1777 122	gt0 concentration 에북 원도 단위 마M 마M 마M	IPMOVERSIS SaferChem(SaferChem(SaferChem(SaferChem(SaferChem(

그림 3-16. 혼합독성 예측모델 구동 결과(인체 유해성(좌), 환경 유해성(우))

Stage 1의 Step 4는 혼합독성 예측모델 구동 결과로, 각 두 개의 탭인 "인체 유 해성" 및 "환경 유해성"으로 나누어 예측 결과를 확인할 수 있습니다(그림 3-16). 혼합독성 예측모델 구동 결과에서는 혼합물 구성물질 함량에 대한 도넛 형 차트, 가장 보수적으로 예측된 독성 값, 용량반응곡선 예측결과, 모델 결과 요 약표 및 혼합물의 용량반응곡선 예측결과를 확인할 수 있습니다.

그림 3-17. 혼합독성 예측모델 구동 결과(1)

- ① 혼합물 함량(사용자 입력정보): "혼합물 구성물질 등록"에서 입력한 화학물질 의 함량이 도넛형 그래프로 표현됩니다. 구성물질이 5개 이상일 경우에는 함 량이 가장 높은 순서대로 5개의 화학물질만 그래프에 CAS 번호로 표현됩니 다(그림 3-17의 ①).
- ② 가장 보수적으로 예측된 독성값(그림 3-17의 ②)
 - 선택한 예측 모델을 사용하여 도출된 결과 중 "가장 보수적으로 예측된 독 성값"이 나타납니다. 화학물질의 독성을 평가할 때, 반수영향농도(EC₅₀, Effective Concentration) 또는 반수치사농도(LC₅₀) 값이 낮을수록 대상물질 의 독성은 높은 것으로 해석됩니다.
 - Simple CA (SCA) 모델을 단독으로 선택하여 계산을 진행한 경우, 독성 값 만 예측되며 mg/L 단위로 고정되어 결과가 출력됩니다.
- ③ 혼합물의 용량-반응곡선 예측 결과(그래프)
 - Simple CA 모델을 선택한 경우, 하나의 독성값만 예측하므로 "혼합물의 용 량-반응 곡선 예측결과" 그래프가 도출되지 않습니다.
 - CA, IA, GCA, QSAR-TSP, Deep-TSP 모델을 선택한 경우, "혼합물의 용 량-반응곡선 예측 결과"가 도출됩니다(그림 3-17의 ③).

	하파파갈 20 년 19 년 - 19 년 19 년 - 19 년 -	CAS number	79	플랐상태	999	문지망	동성증말챔 (End point)	특성값	아주동도단위	대체후보용질 경
3	Metowiron	19937-59-8	하위혼합음질	고체	4,303	228.680	LC50	177	nM	SaferChemD
2	Fenuron	101-42-8	하위혼합병질	24	6.103	164,210	LC50	251	nM	SaferChemD
3	3-(4-isopropy/pheny()-1,1-dimethy/urea	34123-59-6	하위혼합물질	고체	0.559	206.290	LC50	23	nM	SaferChemD
4	Fluometuron	2164-17-2	하위혼합물질	24	18.697	232,200	LC50	769	nM	SaferChemD
5	Chlorotoluron	15545-48-9	하위혼합음질	고서	1,362	212,680	LC50	56	nM	SaferChemD
6	Diuron	330-54-1	하위혼합물질	고체	0.948	233.100	LC50	39	nM	SaferChemD
z	Monuron	150-68-5	하위혼항물질	고체	8.777	198.650	LC50	361	nM	SaferChemD
8	Linuron :	330-55-2	하위혼합물질	고체	2.965	249.100	LC50	122	nM	SaferChemD
9	Buturon	3766-60-7	하위혼합물질	고제	16,144	236,710	LC50	664	nM	SaferChemD
10	Metobromuron	3060-89-7	하위혼합물질	24	14,442	259.100	LC50	594	nM	SaferChemD
11	Chlorbromuron	13360-45-7	10000000				1.202	100		SaferChemD
			014161218	고체	1.702	293.550	LC50	70	nos	
12	Mondinuron	1745-81-2	아위온함물일	24 24	1,702	293.550 214.650	LC50	987	nM	SaferChemDi
12	Matinuan प्रकेशक हिंद्र (19) 10% 20% 20% 40%	1766-0-2	이에는 법교로 하였은 한동일	234 234 Simple CAG	1.702 23.997	293.090	100	967	nos nM CA 53.335 98.406 154,699 231.102	SaferChemDi
12 답물의 용양반공곡선	Monshuren 時間空か 年間10% 20% 20% 40% 40% 60% 60%	1766-81-2	가려로도표	234 234 Smple CA(- - - - - - - - - - - - - - - - - - -	1.702 23,997 mg()	23.350	159	987	N3 NA CA 53.335 98.405 134.099 231.192 231.192 231.192 342.027 520.935	SalerDrend)
12.	Monishurent 4月2日日 日日日 日日日 日日日 日日日 日日日 日日日 日日日	174641-2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	234 224 Serpti CA6 - - - - - - - - - - - - - - - - - - -	1.702 23,997	233350	159	967	на од СА 83335 94.69 221552 242.657 252.935 846.419 9194446	SaletChenD

그림 3-18. 혼합독성 예측모델 구동 결과(2)

④ 모델 결과 요약표(그림 3-18의 ④)

○ 개별 구성물질에 대한 정보(화학물질명, CAS number, 구분, 물질상태, 함 량, 분자량, 독성종말점, 독성값, 예측 농도 단위)를 요약한 표를 확인할 수 있습니다.

⑤ 혼합물의 독성효과 예측 결과

- "혼합물의 독성효과 예측결과"에서는 독성영향 구간별 각 모델의 혼합물 독 성값 예측결과가 표기됩니다(그림 3-18의 ⑤).
- Simple CA 모델의 경우, 독성영향 50%에서의 혼합물 독성값만 예측됩니다.

4. [Stage 2] 노출평가

혼합독성 예측 결과를 확인한 후, Stage 2에서 인체(작업자, 소비자) 및 환경 노 출평가 모델을 활용할 수 있습니다.

그림 4-1. Stage 2 선택 화면

4.1. 노출경로 및 노출량 정보 입력

인체(작업자, 소비자) 및 환경 노출평가를 위해 사용자가 노출경로를 선택 후 노 출량을 직접 입력할 수 있습니다.

	STAGE 1								AGE 3	
	Cho	Step1 see the model	Ste Input info	p2 rmation	Choo	Step3 se the information	Step4 Check the result			
E 작업자 노출량		重 소비자 노출량			圭 환경	고출량				
										제장
								노출경로		
0					작업자 5	ェ출평가모델	경구	경피	홍입	WebLink
D			ecelo	С		ECETOC TRA tool		۲	•	WEBSITE
U 니츠랴 사저			Ø Stoff	enmanage	r°8	Stoffenmanager			•	WEBSITE
우측에 제시된 노	기승 시이느 출평가모델 외에도 사용가능한 노출모	엘을 활용하며 노출량을	ART			Advanced Reach Tool (ART)			•	WEBSITE
도출하여 입력하/	니기 바랍니다.		Ксни	SAR		K-CHESAR		•	•	WEBSITE
			※ 위제시된	노출평가모델 외(에도 사용가능한 노출!	모델을 활용하여 노출랑을 도출하여 입리 1	하시기 바랍니다.			
번호		물질정보			구분	6 上唐帝			노출모델	
	화학물질명	CA	Snumber	발암성	<u> </u>				_	
1	Fenuron	11	01-42-8	N	✓ 경피 ✓ 경미 ▲ 흡입	3.24263 mg/kg/day		ECEIOC	TRA	· · · ·
						1.02065 mg/kg/day		ECETOC	TRA	
2	Chlorbromuron	13	360-45-7	N	✓ 경피 ✓ 흡입	3,40070 mg/m ³		Stoffen	nanager	~
					-	1.71661 mg/kg/day		ECETOC	TRA	~
3	Monuron	1	50-68-5	N	· · · · · · · · · · · · · · · · · · ·	5.00783 mg/m ³		Stoffenr	nanager	÷
								(< 이전 단	계 Stage3 ;

그림 4-2. 노출경로 및 노출량 정보 입력

- 각각의 화학물질의 노출평가를 수행하기 위해 "구분"표 안의 노출경로의 체 크박스를 선택합니다.
 - 이 인체 노출평가는 작업자의 경우 경피 및 흡입을 선택할 수 있으며, 소비자의 경우 경구, 경피 및 흡입을 선택할 수 있습니다. 또한 환경 노출평가는 수생 태, 토양 및 퇴적물의 노출경로를 선택할 수 있습니다.
- ② 선택한 노출경로에 맞추어 노출량 정보를 입력합니다. 노출량을 사용자가 직 접 입력 가능하며 직접 입력할 수 없는 경우, OpenMRA에서 제공하는 "노출 량 산정 가능 사이트"에 접속하여 노출량을 계산 후 입력할 수 있습니다.
 - 작업자, 소비자 및 환경 노출평가를 위해 제공되는 "노출량 산정 가능 사이 트"는 노출경로에 따라 다르므로 사용자가 선택한 노출경로에 따라 노출평 가 모델을 선택할 수 있습니다.
- ③ 제공된 노출평가 모델을 통해 산정한 노출량을 노출경로에 맞추어 입력할 수 있습니다.
- ④ 화학물질의 노출경로 및 노출량을 모두 입력한 뒤, 다음 Stage로 넘어가기 위 해 화면 하단의 "Stage 3"을 클릭합니다.

5. [Stage 3] 복합 위해도 예측모델

Stage 3에서는 Stage 2의 노출량 입력 및 노출평가 수행 후 혼합물의 복합 위해 도를 예측합니다.

그림 5-1. Stage 3 선택 화면

5.1. 복합 위해성 예측 모델 선택

OpenMRA는 혼합물의 복합 위해도 예측을 위해 두 가지 복합 위해도 예측기능 을 제공합니다. 인체 및 환경 복합 위해도 산정을 위해 사용자의 필요도에 맞추 어 예측기능 및 노출경로를 선택합니다.

체 복합 위해도 산정				환경 복합 위해도 산정			
ζ 인체(작업자)				Q 환경			
Threshold endpoint for worker	Hazard Index(Hi) based app WHO/IPCS - SELECT ED Biocidal Product Regula WHO/IPCS	aroach tion (EU BPR)	Ÿ	Threshold endpoint for environment	Hazard Index(HI) based approx WHO/PCS 북합위해도 산정 대상 혼합물의 (· 수생태	ach 상승작용 가능성이 있습니까? ④ 토양	 ✓ ✓ 퇴적물
인체(소비자) Threshold endpoint for consumers	Hazard Index(H1) based apr WH0/PCS 해왕위에도 산형대상 은함물 또 경구	proach 의상승칙용 가능성이 있습니까? ✔ 경피	 ✓ ✓ ≜입 				
출처 및 참고문헌					6 1076		

그림 5-2. 복합 위해도 산정 예측 모델 선택 화면

 \times

OpenMRA

5.2. 독성참고치 및 예측무영향농도 입력

5.2.1. 작업자/소비자 위해도 독성참고치(DNEL) 입력

Stage3-Step3의 독성참고치 입력화면은 인체(작업자. 소비자) 위해도 예측을 위 해 Stage 2에서 수동 입력한 노출경로(경구/경피/흡입) 및 노출량과 수동 입력이 필요한 독성참고치 입력란으로 구성되어 있습니다. 독성 참고치에 대해서 직접 입력도 가능하며 값이 없는 경우 그림 5-3의 빨간색 박스 안에 있는 🚰을 클릭 하면 그림 5-4와 같은 독성참고치를 계산할 수 있는 팝업 화면이 오픈됩니다.

	STAGE 1	>		STAGE 2	>	STAGE 3
		Step1 Chocse the model	Step2	Choose	Step3 St the information Check	⊘ ep4 the result
정보 입력						
重 작업자 위해도		圭 소비자 위해도		重 환경 위		
						(B) 초기화
Ma	화약물질영	CAS number	발암성	中臣		Threshold Endpoint
					上盛号	동성장고지 DNEL operatory 0.06436 젊
	2000 1 Male			🖌 श्रम	3.24263 mg/kg/day	DNEL@sproduction
1	Fenuron	101-42-8	N	✓ 80	8.74229 mg/m ³	DNEL _{Long-term} systemic 10
						DNELReproduction
				✓ 경피	1.02065 mg/kg/day	DNEL _{6,ceng} -term systemic 10
2	Chlorbromuron	13360-45-7	N			DNEL _{Reproduction}
				✓ 홈입	3.40070 mg/m ³	DNELLong-termisystemic 10
						DNELReproduction
				 경피 	1.71661 mg/kg/day	DNEL_Long-term systemic 10
3	Monuron	150-68-5	N			DNELAeproduction
				✓ 홈입	5.00783 mg/m ³	DNELLang-term systemic 10
						DNEL _{Reproduction}

그림 5-3. 작업자 위해도 산정을 위한 독성참고치 입력화면

	owest toxicity value	ainties of the lov	d on the uncerta	ulate AF base	Step 2. Calcu			rs	f dose descripto	1. Selection o	Step		
		경가계수 결정 🥤	ų				(\pm)						
data Over AF	Quality of the whole data (Default: 1)	Differences in endpoint	Differences in duration of exposure	Intra- species variability	Inter- species variability	가장 민감한 독성값	독성값	독성항목	독성영향	시험종	노출경로	물질	еţ
30	1	10	6	5	1	251.0 mg/kg	251.0 mg/kg	LC50	급성독성	Rat	경피	Fenuron	2
		rivation	Step 3. DNEL de										
		0.83667	(DNEL <u>S</u> t							

그림 5-4. 작업자 독성참고치 산출 팝업 화면

독성참고치 계산 팝업 화면은 Step 1~3으로 구성되어 있으며, 작업자와 소비자 독성참고치 산출 방식은 동일합니다.

(Step 1) 앞서 Stage 1에서 입력한 화학물질의 독성데이터 중 가장 민감한 값 이 자동으로 입력되며, 사용자에 따라 ┿를 클릭하여 독성값을 직접 추가 입력할 수 있습니다.

(Step 2) Step1에서 입력된 가장 민감한 독성값에 따라 평가계수가 결정됩니

다. 평가계수는 독성값에 따라 자동으로 도출된 Inter-species variability(종내 다양성), Inner-species variability(종간 다양성), Differences in duration of exposure(단기/장기노출 외삽 시 이에 따 른 차이), Differences in endpoint(독성종말점 간 차이)에 따라 도출 됩니다. 그림 5-4의 ① Quality of the whole data는 이용되는 독성 자료의 일관성과 안정성, 그리고 대체 자료의 신뢰성에 따라 기본값 (Default) 1로 입력할 수 있습니다.

(Step 3) Step1의 가장 민감한 독성값과 Step2의 평가계수가 결정된 후, 그림 5-4의 ② "Calculate" 버튼을 클릭하면 최종적인 DNEL 값(무영향수 준)이 도출됩니다. ③ 도출된 DNEL 값을 확인 후, "저장" 버튼을 클 릭하면 화학물질의 독성참고치가 자동 입력되며 팝업 화면이 닫힙니 다.

인체(작업자, 소비자) 위해도 탭에서 각각의 구성물질을 모두 위와 같은 방법으 로 입력한 뒤, 그림 5-3의 맨 아래 위치한 "다음 단계"를 클릭합니다.

5.2.2. 환경 위해도 예측무영향농도(PNEC) 입력

Stage3-Step3의 예측무영향농도 입력화면은 환경 위해도 예측을 위해 Stage 2 에서 수동 입력한 구분(수생태/토양/퇴적물) 및 환경 중 농도, 그리고 수동 입력 이 필요한 예측무영향농도 입력란으로 구성되어 있습니다.

Step Choose the) 1 e model	Step2	Step3	Step4		
			uncose the information	Check the result		
Œ	소비자 위해도		王 환경 위해도			
						(E) 초기화 (E) 저장
화학물질명			구분	환경중용도	3	예측무영향동도
			🗹 수생태	3.07928 mg/L	10	
Fenuron		101-42-8	✓ 토양	3.24263 mg/kg	10	
			✓ 퇴적물	8.74229 mg/kg	10	
			✓ 수생태	5.89987 mg/L	10	
Chlorbromuron		13360-45-7	✓ 토양	1.02065 mg/kg	10	
			✓ 퇴적물	3.40070 mg/kg	10	
			✓ 수생태	2.02313 mg/L	10	
Monuron		150-68-5	✓ 토양	1.71661 mg/kg	10	
			☑ 퇴적물	5.00783 mg/kg	10	
	Fenuron Chiorbromuron Monuron	Return Return Chlorbromuron Monuron	Notice CAS number Renuron 101-42-8 Chlorbromuron 13360-45-7 Monuron 150-68-5	환학당 전 CAShumber 규정 환학당 전 CAShumber 구성태 Fenuron 101-42-8 및 환장 Chlorbramuron 101-42-8 및 환장 Chlorbramuron 13360-45-7 및 환장 Chlorbramuron 13360-45-7 및 환장 Monuron 150-68-5 및 환장 전 · 정태 및 전용 및 전용	환원의 가지값 CAS number 구분 환경동상도 Renuron 101-42-8 · 수상태 3.07928 mg/L 101-42-8 · 수상태 3.24263 mg/kg · 도 의 자회값 3.24263 mg/kg · 도 의 자회값 3.24263 mg/kg · 도 의 자회값 8.74229 mg/kg · 도 의 자회값 8.74229 mg/kg · 도 의 자회값 8.74229 mg/kg · · · · · · · · · · · · · · · · · · ·	환원이 가입니 CAS number 구영 환영응었 10 Fenuron 101-42-8 의 수상태 3.07928 mg/L 10 101-42-8 의 위적물 3.24263 mg/kg 10 전 위적물 8.74229 mg/kg 10 10 외 위적물 8.89967 mg/L 10 10 외 위적물 1.02065 mg/kg 10 10 외 위적물 3.40070 mg/kg 10 10 외 위적물 1.02065 mg/kg 10 10 외 위적물 1.02065 mg/kg 10 10 외 위적물 1.02065 mg/kg 10 11 10 1.02065 mg/kg 10 10 외 위적물 1.02065 mg/kg 10 11 10 1.02065 mg/kg 10 11 10 1.02065 mg/kg 10 11 10 1.02065 mg/kg 10

그림 5-5. 환경 위해도 산정을 위한 예측무영향농도 입력화면 그림 5-5의 빨간색 박스 안에 있는 예측무영향농도를 입력하기 위해 ♀ 클릭

하면 그림 5-6과 같은 독성참고치를 계산할 수 있는 팝업 화면이 오픈됩니다. 예측무영향농도 산출 방식은 수생태, 토양, 퇴적물 모두 동일합니다.

		🗐 수생타	예 <mark>측무영향농도(</mark> Pl	NEC) 데이터 선택 (PI	NECwater calculate	or)	
	1						Ē
물질	매체구분	시험기간	분류군	독성종말졈(Endpoint)	독성값	데이터갭분석 및 평가계수 결정	PNEC water
Fenuron	수생태	Fish (Fresh Water) ~	급성 ~	EC50 ~	130.0 mg/L	At least one short-term data available	0.13000

그림 5-6. 환경 예측무영향농도 산출 팝업 화면

- ① 앞서 Stage 1에서 입력한 화학물질의 독성데이터 중 가장 민감한 독성값이 자동으로 입력되며, 사용자에 따라 #를 클릭하여 독성값(분류군(시험종), 시 험기간(급성,만성), 독성종말점(Endpoint; EC50, LC50 등))을 추가 입력할 수 있습니다.
- ② 독성값이 결정된 이후, "Calculate"을 클릭하면 예측무영향농도(PNEC)가 산출 됩니다.
- ③ 산출된 예측무영향농도를 확인할 수 있습니다.
- ④ 예측무영향농도가 결정된 후 "저장"을 클릭하면 화학물질의 독성참고치가 자 동 입력되며 팝업 화면이 닫힙니다.

환경 위해도 탭에서 각각의 구성물질을 모두 위와 같은 방법으로 입력한 뒤, 그 림 5-5의 맨 아래 위치한 "다음 단계"를 클릭합니다.

5.3. 복합 위해도 예측 모델 선택

혼합물의 복합 위해도 예측을 위해, 앞서 5.1에서 선택한 인체(작업자, 소비자) 및 환경 복합 위해도 예측 모델과 5.2에서 노출경로에 따라 입력한 독성참고치에 대해 모델 구동 전 최종적으로 검토할 수 있는 화면입니다. 화면은 그림 5-7와 같이 인체 및 환경 복합 위해도 산정을 위해 선택하였던 모델 및 노출경로가 표 기되어 있습니다. 최종적으로 노출경로를 선택한 후 복합 위해도 예측을 위해 화 면 아래 "모델 구동"을 클릭하면 선택된 모델 및 노출경로에 따른 결과 화면이 출력됩니다.

	STAGE 1	>	ST	AGE 2	>	STAGE 3
		Step 1 Choose the model	Step2	Step3 Choose the information	Step4 Check the result	
특합 위해도 산정 예측 모	델 ※복합위해도 산정 예측 모델은 다중 9	로 선택가능 하며 선택된 모델에 따른 결고	화면이 줄력됩니다.			
인체 복합 위해도 산정				환경 복합 위해도 산정		
♀ 인체(작업자)				A 환경		
Threshold endpoint for worker	HI based approach [WHO] 경구	NPCS]	✓ 흡입	Threshold endpoint for environment	HI based approach [WHO/IPCS] 수생태	토양 🗹 퇴작물
Q 인체(소비자)				L		i
Threshold endpoint for consumers	HI based approach [WHO ☑ 경구	/IPCS] ✔ 경피	✓ 흡입			
L						
🔲 출처 및 참고문헌						
 SCA: Loewe, S, and Muisch CA: Loewe, S, and Muisch IA: Bliss, C.I. The toxicity of GCA: Howard, G. J., Schle QSAR-TSP: Kim J, Kim S, 	chnek, H. Über Kombinationswirkungen inek, H. Über Kombinationswirkungen I of poisons applied jointly, Ann. Appl. Bio zinger, J. J., Hahn, M. E., & Webster, T. F. Schaumann GE, Development of QSAR-	I, Mitteilung: Hilfsmittel der Fragest Mitteilung: Hilfsmittel der Fragestel , 26: 586-615, 1939. Seneralized concentration addition ; based two-stage prediction model fo	ellung, Naunyn-Schmiedebergs, Arch, 1 ung, Naunyn-Schmiedebergs, Arch, Eb redicts Joint effects of aryl hydrocarbo r estimating mixture toxicity, SAR QSJ	Exp. Pathol, Pharmakol., 114: 313–326, p. Pathol, Pharmakol., 114: 313–326, 1 on receptor agonists with partial agonis R Environ Res, 24(10):841-861, 2013,	1926, 926, Its and competitive antagonists, Environmental	health perspectives, 118(5), 666-672, 2010.
						< 이전 단계 모델 구동 >

그림 5-7. 복합 위해도 예측 모델 선택 화면

5.4. 복합 위해도 결과 조회

5.4.1. 출력정보

예측 모델 구동이 완료된 후 인체(작업자, 소비자) 및 환경 복합 위해성 예측 결 과가 도출됩니다(그림 5-8).

작업자 위해도 王 소비자 위해도			王 환경 위해도					DOCX Down
-출경로에 따른 위해도(비발암)		2 모델 입력	역 정보					
		번호	시나리오	HI-based approach	CAS-NO	Substance	Systemic HQ	Reproduction HQ
100%-		1	경피	WH0/IPCS	34123-59-6	3-(4-isopropylphenyl)-1,1-dimethylurea	1,94e-9	(e)
		2	경파	WH0/IPCS	3766-60-7	Buturon	8.83e-9	-
75% -	CAS.No	3	경피	WH0/IPCS	13360-45-7	Chlorbromuron	1.02e-8	-
	101205-02-1 34123-59-6 141112-29-0 40487-42-1	4	경피	WH0/IPCS	15545-48-9	Chlorotoluron	5.31e-9	
50%-	1563-66-2 41394-05-2 15972-60-8 51218-45-2 1689-83-4 5915-41-3	5	경피	WH0/IPCS	330-54-1	Diuron	6.64e-9	
	1689-84-5 74070-48-5 1698-80-8 79277-27-3	б	경피	WHO/IPC5	101-42-8	Fenuron	3.24e-9	-
	2164-08-1 94-75-7	7	경피	WHO/IPCS	2164-17-2	Fluometuron	4.17e-9	-
25% -	26225-79-6	8	경피	WHO/IPCS	330-55-2	Linuron	3.35e-9	-
		9	경피	WH0/IPC5	3060-89-7	Metobromuran	1.94e-9	
0%-		10	경피	WH0/IPCS	19937-59-8	Metaxuron	3.35e-9	-
Dermal Systemic HQ		11	경피	WH0/IPCS	1746-81-2	Monolinuron	1.39e-9	-
		12	경피	WHO/IPCS	150-68-5	Monuron	1.72e-9	
!로에 따른 위해지수							8	
경로	산정기법		DNEL endpoint :				위해지수	
경피	WHO/IPCS		DNELReproduction					
경피	WHO/IPCS		DNEL_Long-term, systematic				5.21e-8	
흡입	입 WHO/IPCS		DNELReproduction					
00000			DNELi pog-term systematic				2 750-2	

그림 5-8. 복합 위해도 예측 결과 화면

- ① Risk according to exposure route: 혼합물의 구성물질들의 노출경로 별 위해 도에 대한 그래프
- ② Model input data: 복합 위해도 예측을 위해 입력된 개별 구성물질의 노출경 로 별 위해도
- ③ Hazard Index by Exposure Route: 복합 위해도 구동을 위해 선택한 산정기 법 및 노출경로 별 유해지수(Hazard Index)를 나타낸 표로, WHO/IPCS 기준 으로 위해지수가 1 초과일 경우(EU BPR 기준으로 0.1 초과) 빨간색 글씨로 표기되며, 이는 입력한 혼합물 사용과 관련된 위해성이 허용 가능하지 않은 것으로 간주하며 개선이 필요하다고 판단할 수 있습니다.

5.4.2. 결과 리포트 출력

그림 5-6의 ④와 같이 "DOCX Download" 버튼을 클릭하면, 워드 기반의 예측 결과 리포트가 출력됩니다.

*복합 위해도 예측 결과 리포트

6. 사사

본 OpenMRA는 한국화학연구원의 '화학안전 공공기술 플랫폼 개발'과제(Project

No. KK2452-10)에서 지원을 받아 개발되었습니다.